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THE REBATRON AS A HIGH ENERGY ACCELERATOR

I. Introduction

The electric field, that is responsible for the acceleration

of charged particles can be written as the sum of an

electrostatic and an inductive component. The electrostatic

component is generated by electric charges and its divergence is

proportional to the charge density while its curl is zero. The

inductive electric field, on the other hand, is generated by a

time varying magnetic field and its curl is proportional to the

rate of change of magnetic field, while its divergence is zero.

It is the inductive field that is responsible for the

acceleration of particle in induction accelerators 1 "5 .

Only modest acceleration can be achieved with electrostatic

fields because the maximum potential is limited by insulator

*flash-over. However, this is not the case with inductive fields,

since the voltage is induced only in the circuit threading the

flux and the voltages of a sequence of circuits successively add

to the energy W of the accelerated particle. The striking

difference between the two fields becomes apparent when the orbit

of the particle Is circular. After a complete revolution W2 -W 1

= 0 for an electrostatic field, but W2 - W1  * 0 for an inductive

field, if the magnetic flux through the particle orbit changes

with time. An additional advantage of induction accelerators is

their inherent low impedance. As a result, these devices are

ideally suited to drive high current beams.

Quite naturally, Induction accelerators are divided into

linear and cyclic. The linear devices are in turn divided in
6-9 11112,13Astron-type , Radlac-type' 0 '1I and auto-accelerators.

Manuscript approved November 27, 1985.



In the first type, ferromagnetic induction cores are used to

generate the accelerating field, while "air core" cavities are

used in the second. In the auto-accelerator the air core

cavities are excited by the beam's self fields rather than

external fields. Similarly, cyclic accelerators can be divided

into two categories. In the first category belong those cyclic

accelerators that use weak focusing to confine the electron beam

as in the conventional14,15 and the modified betatron 1 4 1 6 . In

the second category beam confinement is achieved with strong

focusing fields. This latter category includes the Stellatron1 g ,

Racetrack2 0, and Rebatron accelerators21 . All three devices are

currently in a rather preliminary state of development.

In the last two devices20,21 the particle acceleration occurs

rapidly, i.e., in a few usec and thus limitations imposed by

instabilities, field errors and synchotron radiation losses are

substantially relaxed.

A rebatron 2 1 is shown schematically in Fig. 1. The high

gradient localized field that is responsible for the rapid

acceleration Is produced by a convoluted parallel transmission

line, although other transmission lines may be more appropriate

in an actual system. Since the acceleration occurs over a

few usecs, the contraints imposed on the vertical field are very

stringent. To reduce the inductance of the system, the vertical

field is generated by two coaxial, cylindrical plates as shown in

the lower right corner of Fig. 1. The axes of these plates

coincide with the major axis of the toroidal vessel and are

located symmetrically around the minor axis of the torus. The

purpose of the gap in the outer plate is to provide a field with

the desirable external field index. The transmission lines

change mainly the local, vertical magnetic field, while the

magnetic flux through the beam orbit remains approximately

constant.

The mismatch between the beam energy and the vertical field

is alleviated by a strong focusing field. This field is
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generated by a set of Z = 2 torsatron windings, i.e., two twisted
wires that carry current in the same direction. In addition to

the transverse components of the field, the torsatron windings

provide a zero order toroidal magnetic field. The beneficial

effect of twisted quadrupole fields on the beam orbits has been
22recognized for several years2, In recent years, the z = 2

stellarator field has been used by Roberson et al. to improve the

bandwidth of the modified betatron in a device named Stellatron 1 9

and also in the racetrack accelerator 2 0 , a device similar to

rebatron.

In recent studies21, we have demonstrated that the energy

bandwidth of a rebatron accelerator can be very wide. In

addition, we have shown that the torsatron windings also

substantially improve the current carrying capabilities of the

device and could alleviate the beam displacement problem

associated with the diffusion of the self magnetic field.

Therefore, it is expected that the limiting current in a rebatron

would be determined from collective instabilities and not from

the macroscopic stability on the beam orbits.

Beam capture in the rebatron, as in other devices that use

strong focusing fields, is very difficult. The reason is that

the strong focusing fields make the particle orbits insensitive

to the energy mismatch and thus, small changes in the vertical

magnetic field are not sufficient to move the beam from the

injection position near the wall to the minor axis of the

torus. Recently, we have developed two injection schemes that

appear very promising. One is based on the drag force of a

resistive chamber wall23 and the other 2 4 on the modification of

the beam orbit by a time varying field.

During acceleration, when the vertical magnetic field By

exceeds by far the torsatron field Bt , the beam dynamics is
solely determined by the vertical and toroidal fields. For most

appli-ations of interest Bv >> Bt at the peak of acceleration and

3
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thus, beam extraction from the rebatron is similar to that from a

modified betatron2 1 .

In this report, we present results from our studies of the

beam acceleration in a rebatron accelerator when the magnetic

fields varies with time. In section It the applied electric and

magnetic fields are described and in section III a simple

theoretical model is examined and some important conclusions are

derived from this model. The numerical results for an

accelerated beam and their interpretation are given in section

IV. Finally, the conclusions of this investigation are presented

in section V.
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II. Applied Fields

a. Torsatron and External
Toroidal Magnetic Fields

In the local cylindrical coordinate system e, e,,, e5

shown in Fig. 2, the magnetic field components of the z=2

torsatron and external toroidal coils are given by the

expressions (21)

B = 8(°)+ B(1)+ B(1)+ 8(1)9 (2.1a)

B5 =B (o)+ (1)+ B(1) + 8(1) (2.1b)
,

Bs = 1B(O)+ (1)
5 1 + (p/r 0) cosb s BS+ (21c

where

B(O) 0 A( ° )  m3°  I' (m( ') sinr2m(6-as)), (2.2a)=m on 2 m'"
mI=I

(o Bo  A(m) 2m ° I (to) cos(2m(s-cs) (2.2b)

B( ° )= Bext+ B fl - m(°  mo0 I2 (mo) cos(2m( -cis)U, (2.2c)
0 0 m

m=-1

and
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e( 1 0 m= () 1 1(m )-A(o)r2(1tm)m3 I2 m

+r(ma) + 2m(2m±1) + 1) I2 (m'p)lsin((2m1),-2ms) (2.3a)

8 ).1 008j (2m±1) IA1 1.... 1
0± a m=l m M; 2m±1(m;)

-AO (m; I- (m') + (1±2m) I m(m3fll cosr(2m±1)s72mas1 (2.3b)

mr 5 2m m m

8 ( 1 10 B mA( )

-A(O~mO (M; I 2(m;) + (1±2m)1 2 m(mY0) I cos((2mt1).6-2mas) (2.3c)

8 (1).= a r 9. 8 0 - 11 sin4 (23

8i0  r tn 8r 0 i1io (2.3e)
0 COSY

The coefficients A(o) and AM reeqalt

A= K' (m'O) Cm (2.4a)

A(1  .(0) K 2 (mo )-K 2 m±1 (m O)+(1±4in)(ino )K 2 m(mo ))C m (2.4b)

where

C =2 si n(2ma)(25

m 2ma 25

6



7
The remaining parameters are defined as follows:

B = (2.6)

a 2,(2.7)

2 a o ,(2.8a)

o = 2 0  . (2.8b)

Here, I is the current flowing in the windings, Po is the

winding radius and L is the period of the windings, 2 5 po is the

width of the current carrying conductor, ro is the major radius

of the torus, B ext is the external toroidal magnetic field at theso
minor axis of the torus and In (x), Kn (x), I n(x), K n(x) are the
modified Bessel functions of the first and second kind and their

derivatives. In a toroidal device, the period satisfies the

relation

2 n r o02 N (2.9)
L

where N is the number of turns around the torus for each winding.

The zero order fields B(O)9 B(o), B(O) are the field components
P (6 5

produced by the helical windings in a straight (cylindrical)

configuration while the terms proportional to o /r are the first

order toroidal corrections. These fields, as given by Eqs. (2.2)

and (2.3), have been obtained for the surface current density

7



J =0 (2.10a)

I 0 2o~b
J 1 0 o - + o ) os f ( i-tS , (2 .10b)

= jo 0 1 + (o/r 0) COSv6

I

j = 0 f(s-as) , (2.10c)
2 o0

where f(¢) is a periodic function of € with period Tr, and

1 if - < < (2.11)

f(¢) = 0 if f < * < i -

From Eqs. (2.3d) and (2.3e) it follows that there is a

constant B" ) component of the torsatron magnetic field. This

component is due to the fact that the currents in the two

torsatron windings are in the same direction. (In a stelarator

this component is zero). It is assumed, in the rest of this

paper, that this undesirable component is cancelled by adding an

external magnetic field.

The three magnetic components at s=O are plotted in Figs. 3a

and 3b, for t = 0 and s - r/2 , respectively. The various

parameters for these plots are listed in Table I and are those

used for the torsatron and external toroidal magnetic field in

the following sections. At t = 0, the B component is equal to

zero. The Bb component increases linearly with o near the minor

axis and much faster near the windings. The toroidal correction

at o = 0 is approximately -100 Gauss. In Fig. 3, in addition to

the toroidal field produced by the torsatron windings, there is

an external toroidal field Be xt  equal to 10 kG at o = 0 , which
is produced by a set of toroidal coils. As seen from Eqs.

8



(2.1c) and (2.2c) this field varies as 1/r and is independent of

the toroidal angle 9 = - s/r . At P = 0 , the total toroidal
= Bext+ B,= 15.6 kG. In general, B does not vary as I/r,

field B sn

since it depends on the toroidal angle.

Figure 3c gives the magnetic field lines in the (r,z) and

(o,s) planes. Because of the toroidal corrections, the magnetic

axis does not coincide with the minor axis of the torus, located

at r=100 cm. The magnetic axis is always shifted toward the

major axis of the torus. This shift is due to the contribution

in the magnetic field, at some point inside the torus, mainly

from that section of the windings which is located at a toroidal

angle 1800 from this point.

In the theoretical model that is formulated in Section III,

the toroidal corrections are neglected as well as all the terms

with m > 2 in Eq. (2.1) through (2.4). Also, it is assumed that

5 << 1, so that C1  = 2. Finally, use is made of the cylindrical

components Br , B9, Bz in the global coordinate system e r, eq, ez

shown in Fig. 2. Their relation to the magnetic components in

the local coordinate system e, e,, es is as follows

Br = B cos, - B sin6, (2.12a)
r

B = B sin, + B cosb, (2.12b)

B9  -- (2. 12c)

Under these conditions, the magnetic field from the torsatron and

the toroidal coils is approximately equal to

9



Br " B0  1  (Ii() sin( -2as) + 13(0) sin(3b-2as)), (2.13a)

Bz -  Boc 1  (I,(0) cos(o-2as) - I3(-) cos( 3 b- 2 as), (2.13b)

*B 80 + 2 B 0 12() cos(2b-2xs) (2.13c)

where

£1 = Do K2  (3o), (2.14a)

3o so B (2.14b)

Eqs. (2.1) through (2.8) were used to compute the magnetic field

in the numerical integration of the equations of motion for the

beam centroid. In this case too, it was assumed that 5 << 1, so

that C1 - 2 and, in order to save computer time, only one term,

namely m = 1, was retained in the series.

b. Vector Potential and Magnetic Field of the Plates.

Let a single cylindrical plate of width b and height h,
where b << h, be located so that the axis of the cylinder

coincides with the major axis of the torus and the distance of

the plate from the minor axis of the torus be equal to a. For a

homogeneous current density with a single component

J = I p/(bh), where Ip is the current flowing in the plate, the

vector potential A is (25)

A D a^. A (2.15)
Y c

10
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where

A06 (x,z ,r 0 a,h 9b)

a+1h/2 r + x' 1/ (2.16a)

4 ~ dx' J z - 0- 1~ (1+k- 2 K'(kA) -E,(k-It

a b~ -h/2

and

Ak' 2 . (x -) 2 + (z -ZY

(2 r 0 + x + X-) +- (z - ZA)(.1b

The point (x,z), where A is computed, is in the local coordinate

system ;~ x e s of Fig. 2, and '(Ik-), E'(k-) are the

complete elliptic integrals. When the plate is located close to

the torus, so that a/r 0 <<1, and one Is Interested In the vector

potential only inside the torus, then k' 2<< 1 and the elliptic

integrals can be expanded 26  with respect to k'2  To lowest

order A~is given by

A qz * r0 . a, h. b) (2.17)

a + bk h/2

f + 1/2  2
bh f dx' J dz ( r0 +X ( )16+2

- a -~ -z - hi / z~ 1

a + bhi2

2w J. d' 1 x'r+x

1 '-~x' ' )2 + (Z' Z)
+ (1 + -& 2 tn 2 +x2 + 2

ro O8r0 )2



which contains the toroidal corrections to the lowest order in

a/r o . A further simplication occurs from the fact

that b << h, so that A is computed in the limit b * 0. Then the

integrals in Eq. (2.17) can be computed exactly and A is equal

to

A (x, z, rO , a, h, 0) ra+X (2.18)

-2 (1 + I a -x) , + a x (Arctan + Arctan -.r h a-x a- x

+ z (+ z) 2 + (a - x)2 h h 2 2I2 " ) 1 z (~ - z)2+ (a - x) 2

+12n +2 i zn 7 I
2 h n (8r0) 2 2 h (8ro0)2

The Br , Bz components of the magnetic field near the plate (and

therefore inside the torus), and to the lowest order in a/r o , are

equal to

Br _Tp 1 , (2.19a)
r c r

B p , (2.19b)Z C Z

12



where

B r 3z (2.20a)

= aAe + - A (2.20b)

z ax r0 8

Substitution of Eq. (2.18) into Eqs. (2.20a), (2.20b), leads to

the expressions

2 2

r= ( L a - x n) 2 2 2.21a)

z) + (a -x)
and

hh

rA 2 + Arctan 1 (2.21b)
h a - xz -22 2

(+Z + z) + (a - x) 2 z ( - z) + (a - x)
I T T-n 2n + 2 Ln )

0 (8r0 )2 h (8r0 )

In the limit r0 + -, Eqs. (2.20), (2.21) reduce to the magnetic

field of an infinite length slab, as they should.

The particle orbits are not stable unless the external field

index n of the vertical magnetic field is in the region
0 < n < 1. Such a field can be generated by a set of two plates

which surround the torus (cf. Fig. 1), with the outer plate

having a gap symmetrically located In the middle of the plate.
From the vector potential for a single plate, it is easy to

compute the vector potential of the outer plate with a gap of
height Ho . This vector potential is given by

-o =13



h H H0ah H (xz,r 0,a,h,O) 0 A (x,zr ,a,H ,0 ). (2.22a)
0 00-

The current density in the presence of a gap is proportional

to I /(h - H ). The first term in Eq. (2.22a) is thep o

contribution to A,+ from the whole plate (of height h) and the

second term is the contribution of the gap (of height Ho ) which

should be subtracted. Since the inner plate is located at a

distance -a from the minor axis and carries a current - I p, its

vector potential is

Af. = - A9 (xz,ro,-a,h,O) , (2.22b)

and the combined potential from both plates is

A - + A (2.23)
I C 8+ a-

The magnetic field is computed with the help of Eqs. (2.13)

through (2.23). Near the minor axis, the magnetic field

simplifies to the following linearized expressions:

B B n ro, (2.24a)r zo 0r0

B B i - n X (2.24b)Bz = zo 0 rO0

where

n - -xxO (2.25a)
z=O

B 0 B xO

z=O

14



0 fo ri + I a ri + -Ho h
2 2a

= h
Arctan h(fa'

I

zo c zH

8 h hBzo T ' Arctan T-+ ( Arctan -2

zo h 2a h- h 2a
0

h 2
4H I+ (- )

-I Arctan - H 2 . (2.25c)
0 0 1. + (-"ra)

Equations (2.24a), (2.24b) are identical in form to the

linearized betatron field in the modified betatron. According to

Eq. (2.25a) the external field index n0 at x=z=O is sensitive to

the height H. of the gap. In particular, if there is no gap on

the outer plate (i.e., H0 0), then no becomes negative.

The magnetic field components of the plates are plotted

without a gap in Fig. 4 and with a gap on the outer plate in Fig.

5. The various parameters for these plots are listed in Table

II. The effect of the gap on the magnetic field is quite

prominent. In the absence of a gap, no changes from positive to

negative as r increases from 90 to 110 cm for z less than 10

cm. On the other hand, when the gap is present, no has the

desired value of 0.5 near the minor axis of the torus (i.e., in

the linear regime), but as one approaches the gap, no varies from

positive to negative as z increases from zero to 10 cm. Figures

4b, 5b and 4d, 5d show the variation of B r versus r and Bz versus

z, respectively, for various values of z or r. Ideally, they

should be straight lines, parallel to the horizontal axis in the

region of interest. As may be seen from Fig. 5 this is the case

when there is a gap. Although only the first order toroidal

15



corrections were retained, they are quite noticeable. For

example, in Fig. 4a at z=O, there is a difference of 0.6 Gauss/kA

in the values of Bz at r=90 cm and r=110 cm, due to the toroidal

correction. Finally, it should be pointed out that, because of

the gap, the value of the vertical magnetic field at the minor

axis drops from 18.45 Gauss/kA to 17.58 Gauss/kA.

As already mentioned, in order to keep the beam matched, the

current in the plates should increase in synchronism with the

energy of the beam. Therefore, there is an electric field

E associated with the time dependent vector potential of thep
plates, namely

E = 1 A

p c 7 t
(2.26)

(Aq+ + A 0
c

As shown In Section III, this electric field will have an effect

on the rate of change of the current in the plates.

C. The Accelerating Electric Field.

Consider a periodic sequence of cylindrical perfectly

conducting sections of radius ow with their axes lying along the

same line and separated by a distance d, as shown in Fig. 6a.

Each alternate section is charged to a potential + V /2 and the

remaining sections are charged to a potential - V /2, The

period of the structure is equal to 0, where D >> d. Under this

assumption, the local electric field in the region

- D/4 - s 0 0/4 is, for all practical purposes, the same as that

of two cylinders of infinite extent. In either case, the local

16
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electric field is given by the solution of Laplace's equation,

i.e., a V Z 0. The advantage of solving this equation for the

periodic structure rather than the two cylinders of infinite

extent is that it leads to a solution expressed in terms of a

much faster converging series. The lowest order toroidal

corrections have been included in the solution. The method for

incorporating these corrections is the same as that used for the

torsatron magnetic field. The operator A in the local coordinate

system e, e , es can be written as follows:

A = A(0 ) + 8A (2.27)

where

i (0)__. i a 1 2
A o I + 1 + - (2.28a)

9 a as

1 a 2  1 a 2 a 1 a

c ( cos - s cos, (2 .28b)
0 as

and s - - ra 8. The potential V is also written as a sum of the

zero order and first order contribution in the toroidal

corrections, namely, V = V(0 ) + V('), where V(0 ) satisfies the

zero order Laplace equation

A(0) V(O) = 0 . (2.29)

Since the orginal Laplace equation becomes equal to

17
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()+ Se) () + V(1)) . 0, (2.30a)

it follows from Eq. (2.29) that the first order toroidal

correction in the potential V(1 ) satisfies the equation

A (0) V(1 SA - (,& (2.30b)

The method of computing the toroidal corrections consists in

solving first Eq. (2.29) with the boundary condition at p = o

0 If0 s4
dj 2

o() if d 4 S 0 - d ,(2.31)

V 0D0- d 0
-r -F S)if 2 4C s <

and VC)(-s) =- V(') (s). Then VM Is computed by solving Eq.

(2.30) with the boundary condition that at

0 = $ () 0, if - D/2 -cs 0 /2. The accelerating
electric field, being the gradient of -V, is computed from the

relations

E=- .2. O + V(1) , (2.32a)

E ._ 1 (V(0 ) + V(1 ) (2.32b)

s 1 + (p/r 0  cos VT1)S 23c

01



The components of the accelerating electric field, including

the lowest order toroidal corrections, are

E = E(O)+ EMI )  (2.33a)
0 0 0

E = ( , (2.33b)

1 + (o/r 0 cos (2 33c)

where

E (0 )  - ' A ) I ( ) sln( n (2.34a)on n n

n1

E (0 )=  _ A (O )  (2.34b)
s n on n

n=1

and

E(1)=-o coss f= A(1)t'I ( n) "1 I ( n )

- nO' 0 n

n 1 On
2

+ BM I Io (2 1 +  2 s'n 1(°'n)1  sin( Sn) (2.35a)

E(1) sin A(1) Ii

n " n

+ BM (n) + n Ii( n) 1 sin(') , (2.35b)
n o n n i(;n (
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- cos6 I A(') I (n)
s n in

n-i

+ B 1 )  ri (3n) + s I( ) 1 1 cos(in) . (2.35c)n n o n n (nCs 'n

The rest of the parameters in these relations are defined as

follows:

V sin (2n-1) d
2(0 )=  2 ' 0 1 (2.36a)D/2 (2n-1) 7 -I o((2n-1) D /2P

n 2 r0  D/2I1 r(2m-i) P.D/-- -

w 0 D/2

A(1) = - 1 ° 1 A(/) (2.36c)n 2 r 1n 2 - ) O

n 2 r o  (2n-1) 'w n

and

n = (2n-1) i D (2.37a)

(2n-I) 2 . (2.37b)

The electric field is computed in the interval -D/4 4 s c D/4.
A choice of 0/4 - 3pw leads to a fairly accurate representation

of the accelerating field. As a result of the modified Bessel

functions, the series in Eqs. (2.34) and (2.35) converge

considerably faster than those used previously (2 1 ). It may also

be seen from these equations that as o increases from zero

to Ow more terms must be retained in the series for
convergence. Finally, the presence of the toroidal corrections
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and, in particular, the 1/r dependence of the s-component of the

electric field (cf. Eq. (2.33c)), is essential in the orbit

equations. It will be shown in Section III that the toroidal

corrections of the accelerating electric field cancel out the

first order contribution from the electric field of the plates

(Eq. (2.26)) in the expression for the mismatch Sy/y, and as a

consequence the drift of the particle orbits is, for all

practical purposes, zero.

The electric field lines and field components, given by Eq.

(2.33) through (2.37) are plotted in figs. 6b, 6c and 6d. The

various parameters for these plots are listed in Table III. The

dotted lines in Fig. 6b indicate the location of the accelerating

gap. Fifty one terms have been retained in the series. In Fig.

6c, the Gibbs phenomenon is quite noticeable

at P = Pw = 10 cm, where the Es component is discontinuous. As

expected, the line integral along the s-axis and at any

radius P is equal to Vo . As may be seen from Fig. 6d

the E component changes sign as s increases, and therefore, on

the average it has little effect on the particle orbits. The

poloidal component E was not plotted since it is zero at 6 = 0.

In general it is small and its contribution to the particle

orbits is negligible.

The electric fields given above are a good representation of

the fields produced inside the torus by a transmission line,

since in this region the inductive magnetic field is zero and

therefore the potential is described by a V = 0.

Ill. Simple Theoretical*Model

a. Approximate Equations of Motion and Conservation Law

The exact equations of motion are too complicated to provide

any insight into the effect that the torsatron and vertical

magnetic fields have on the particle orbits. A better
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understanding is gained by a simple model which provides fairly

accurate results and is based on the assumption that the toroidal

velocity v 6 of the particle, being very close to the velocity of

light, remains constant (but not the energy). In this case

s = vSt , (3.1)

and the remaining equations of the motion are

2d (- - (v B B (3 2a)
dt mc (v Bz  I

d -mc (F B6 - v6 Br ). (3.2b)
T Y j mc v9r)

For simplicity, the self fields will be neglected in the present

, analysis. Also, the magnetic field of the torsatron and toroidal

coils is given by the simplified Eqs. (2.13) and that of the

* -. plates by Eqs. (2.24). In Eqs. (2.13), 2as is replaced

by - wt (cf. Eq. (3.1)),

where

law = 2 a vf. (3.3)

Set x = r - ro , and define the complex amplitude

u =x + i z o e (3.4)

Then Eqs. (3.2a), (3.2b) can be combined into one complex
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equation of motion, namely,

u +i 1 + 2 2 () cos (2t + Wwt) - i - 5

" o -i ( + w t )  ( i e (3 ,b+ ,t ) t
' + Elfdw-2 rjl(3) e- -I3 (3

YY

+ 2 u +62 U = v _ Z03
Sr 0 (

where

2 1 23.6a
6" 2 1 2 n (3.6a)

T 0 "no r '

0 r":"" = (3.6c)

and 11o, ,o' zo are the nonrelativistic cyclotron frequencies

associated with the magnetic fields Bo o , Bo , Bzo (i.e., Q =

(e/mc) B). The quantity 2r/w o is the time it takes a particle on

the minor axis to make one revolution around the torus.

Moreover, the rate of change of y is mainly due to the s-

components of the electric fields of the transmission line and

the plates, so that

* - e v (E + E p (3.7)
U W ye gap p

." ,,."mc

where E = - E s , and E s , Ep are given by Eqs. (2.33c), (2.26),

respectively.
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Equation (3.5) is still too difficult to handle. But it

leads to a conservation law when the fast motion which oscillates
with frequency W is averaged out in Eq. (3.5). Details may be

found elsewhere ( 4 ). Only the final result will be given here
which was obtained under the assumptions that y remains constant

and that «w << I ,lI'/y. Under these conditions the

conservation law becomes

ri- 0 1- ~-__________2 n 1 y Z
n r 1 - n ( - 2 2

0 Yr - n 0 - 0 

2
+ (-2-) ( b_ 2 + b+ 2aR)) = K, (3.8)

where

5Y__ Y - Yo
Y Y 3.a

= fo r0  (3.9b)

B 2 2

b+ = Z O - (3.9c)

+~ i.... (1 - tY)
)w z

Here, K is the constant of integration and is determined from the
initial conditions, (X,Z) is the average (or i, ding center)

position of the beam centroid, R = (X2 + Z2 ) , Yo is the value

of y that matches the vertical magnetic field Bz from the plates
when the beam centroid is at X = Z = 0 (i.e., at the origin of

the local coordinate system), and Sy/y is the mismatch between
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the actual value of y and y0  When the mismatch is equal to

zero, then the beam is matched at the origin, i.e., the point X =

Z = 0 is an equilibrium position.

Consider the special case when 2aR << 1 and Sy/y << 1.

Then Eq. (3.8), which is actually an equation for the particle

orbits, simplifies to the following expression:

(b_ + 1 - no) r X - -y/y )2 + (b + no) rL- 2 = K, (3.10)

Sro b_ + 1 - n 0  r0

where K is a new integration constant. This equation describes

either an ellipse or a hyperbola centered at (Ar,O), where

Ar = yL .x.. (3.11)
r0 b + 1 - n0

At the initial stage of the acceleration, the torsatron

magnetic field B0 is much larger than the vertical magnetic field

B, i.e., IB0/Bz0 >> 1. Since the external field index no is

of order one, it follows that Ib i is much greater than one, or

Inoi, or 11 - n01, and Eq. (3.10) simplifies to the relation

r.2.- - SYY) + (Z )2 = K'. (3.12)
r0 b- r0

It is seen then that, in the presence of the torsatron field, at

the Initial stage of the acceleration the orbits on the (r,z)

* plane are circles centered at

Ar . y/y. (3.13)
r0 b"

This orbit displacement is independent of the external field

Index n0 and since Ibij >> 1, it is not sensitive to the value of

the mismatch 6y/y, i.e., the torsatron field, which dominates at

the Initial stage of the acceleration, does provide confinement

of the beam inside the torus.
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At a later stage of the acceleration, as the vertical

magnetic field increases in synchronism with the energy of

the beam, it becomes eventually greater than Bo and the

condition Ib-I << I holds. In this case, Eq. (3.10) reduces to

the expression

(1 - no) r. .- y/y 2 + n r K . (3.14)
r 0 - n 0 r0

Therefore, in order to have closed orbits during the whole

duration of the acceleration, the condition 0 < no< 1 must be

satisfied, and it is this condition that requires the presence of

a gap on the outer plate, as indicated in Section II. Also, in

this case

Ar . Y/y (3.15)

70 no

which is sensitive to the mismatch 4y/y and to the external field

index no . In the special case, when n0 = 0, the orbits are given

by the relation X = constant, i.e., they describe a vertical

motion and this may provide a possible means of extracting the

beam from the toroidal chamber.

b. Rate of Change of the Current in the Plates

As mentioned in the previous Sections, the two coaxial

cylindrical plates generate a local vertical magnetic field which

increases in synchronism with the beam energy so that the major

radius of the ring remains approximately constant. From Eq.

(3.7), a particle at the origin of the local coordinate

system e , e, e s , will gain energy at the rate

Ve r 0 - A 1 (3.16)
mc 2itr 0  c2  Ro
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Equation (3.16) has been derived from Eqs. (2.15), (2.26) and by
taking the average accelerating field in the gap equal to
E = V /(21r o ) . The quantity A is equal toEgap o

8ro 2a a 4a ha

A en aL ArctanARo ro 0 + (h )2 -- A r a -

2 H0  ri + a -2a 2a Arctan - H0
h- H0  2 r h 2a Ho  2a

1 1+n j. 1 .(3.17)
H 2

1 + (H)2

The beam will remain matched at the origin during the
acceleration when (cf. Eqs. (3.9b), (2.25b), (2.25c))

C 2 mc Bzor " 
(3.18)

From Eqs. (3.16), (3.18), it follows that the rate of change of
the current in the plates should be equal to

1 i =nVo(3.19a)

c-Z P 2 -- o B zo

where

27

"- V . " ' -



n Z
p 1 A R(3.19b)

r zo

The parameter np is the acceleration correction factor due to the

electric field of the plates and has been listed in Table II.

It is interesting to show that even when the beam centroid

is slightly off the origin at some later time, the mismatch Sy is

still zero to first order in the displacement from the origin,

if Sy was initially zero. A qualitative argument will be

presented here and a more precise proof is given in the
Appendix. If the beam is at some position r = r0 + x, the

average accelerating field is equal to E gap= V /(2wr) and the

vector potential at that position is proportional to
A 0 + (A ./ax) x, where the partial derivative is evaluated at

the origin. Therefore, from Eqs. (3.9a), (3.9b) and (3.7), it

follows that

d~yr V0 I A Idty mc rA + - + BZr
dt mc 2w (r0 + x) c o 2 zo

V 1 V I 3A
21r++ r0( o - o- + - 2 X)X]= 0 (3.20)

o c 0 2wr0  c

In deriving Eq. (3.20) we used Eqs. (3.19a) and (2.20b).

It is seen then that, in the rate of change of Sy, associated
with the slow motion of the beam, the first order effect of the

plates is canceled by the first order toroidal corrections of the

accelerating field. Therefore, the toroidal corrections

(especially the 1/r dependence) of the accelerating field must be

Incorporated in the equations of motion. Otherwise, there is a

slow drift of the beam in the radial direction. This has been
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observed in several computer runs which have not included the

toroidal corrections. After the toroidal corrections were

included, the rate of change of sy became negligible.

c. Resonances and Multiple Frequencies in the Rebatron

In contrast to the modified betatron where the acceleration

takes place continuously, in the rebatron it is a stepwise

process, since the accelerating field Is localized at the gap.

Therefore, there is a periodicity associated with the rise of the

beam energy, with period T = 21/w i.e., equal to the time it

takes the particle to make a full turn around the torus. Let the

increment per turn in y be Ay. Since the increase of y takes

place during the short time At that the particle crosses the

accelerating gap, At << T, and y is a ladder function, of the

step Ay and length T. Therefore, y can be expressed as follows:

y(t) = Ylin(t) + Yosc(t)' (3.21a)

where

1 tYlin~t) ='Y + Ay ( + .), 0 <t < ", (3.21b)

Yosc(t) Ay T-). 0 < t 4 T, (3.21c)

and yosc(t + T) = Yosc(t). Since the first crossing through

the accelerating gap occurs at time t a 0 , after m turns y is

equal to y = y0 + (m + 1) Ay, where Y0 is the initial value ofy.

Since Y osc(t) is a periodic function, it can be Fourier

analyzed, i.e.,

29

*1~w * . q7~,,



'Y5 (t)=~ ni i sin(nw t) .(3.22)

As Y increases, the stage is reached where 11)eo/YI«< w~ and the
* torsatron field is no longer effective and can be dropped from

the equations of motion. Then, Eq. (3.5) reduces to the relation

'e +1 C2 (Y 0
U + i Wo + 2 U - ZO 0 (3.23)

where, for simplicity, it was set no 1/2, and v -M c . Since
the vertical magnetic field Bz matches at all times the linear
part of y (cf. Eq. (3.21b)), and since eventuallyly05 c(t)I "<< n~)

Eq. (3.23) can be written approximately as

* 1 2 Ylin ro -7 s in (no t) (3.23)

This is a linear second order differential equation with
characteristic frequencies equal to

W+= e 4 + 2± t 0 J (3.24a)

where

lio Bo (3.24b)

Therefore a resonance is excited when

W+ l vj 0 , n =1,2,3, ... , or, in terms of jwhen

1 B zo2n (.5

T~TWT 2n - 1
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A similar expression has been obtained for a periodic disturbance

in the modified betatron (2 7 ). The difference here is that the

occurrence of resonances in the rebatron is an inherent propery

of the device due to the localized accelerating electric field

and the periodic nature of the acceleration. According to Eq.

(3.9b), resonance occurs each time y - yn' where

n c ' (3.26)

and n = 1, 2, ... As it will be shown in Section IV, these

resonances cause the orbits to expand and, in the worst case

(i.e., when n = 1) the beam hits the wall of the torus.

It is apparent from Eq. (3.24a) that always w_ < w+. But,

as the vertical magnetic field increases, w+ may become a

multiple of w_, i.e., w+ = mw .. In terms of jr-1 this happens

when

1 B - I\2m(3.27)

where m = 2, 3, ... The occurence of a multiple frequency

changes the orbits into triangular or square shapes depending on

the value of m. According to Eq. (2.9b) a multiple frequency

occurs each time y - ym, where

11,50 re
Ym i2-i c (3.28)

and m = 2, 3,... This has been observed in the computer runs

and examples will be given in Section IV.
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IV. Numerical Results and their Interpretation

The various properties of the rebatron were investigated by

integrating the relativistic equations of motion for the beam

centroid using Eqs. (2.1) through (2.8) for the torsatron and

external toroidal magnetic fields, Eqs. (2.19) through (2.23) for

the magnetic field of the plates, Eq. (2.26) for the electric

field of the plates, and Eqs. (2.33) through (2.37) for the

accelerating electric field. The various parameters and their

values are listed in Tables I, II, and III. The self fields of

the beam have not been included in the computations.

To test of the extent over which the external field index

confines effectively the particle orbits, some computer runs

without acceleration at y = 387 were made in the presence of a

gap on the outer plate. The vertical magnetic field was set

equal to Bzo = 6597 Gauss (i.e., it matches the value

of Yo = 387). The results for various initial conditions are

shown in Fig. 7. As expected, when the centroid is initially at

the origin, it remains there, since y and B. are matched at that

position. On the other hand, since the external field index

depends on the position and is close to one at

x = 6 cm, z = 0 (cf. Fig. 5a), when the particle is placed

initially there, it moves in a radial outward direction (cf. Eq.

(3.14)) and eventually strikes the wall. Therefore, for the

parameters chosen, the particle is successfully confined inside

the torus up to distances of 5 cm from the minor axis.

In order to test the focusing effect of the torsatron

magnetic field at the initial stage of the acceleration a set of

runs was made without a gap on the outer plate so that

n r - 0.18. The results are shown in Fig. 8. The initial

vertical magnetic fields are: a) Bzo = 341 Gauss (it

matches Yo = 20) , in Fig. 8a, b) B = 3.41 kG (it matches

Yo = 200) in Fig 8b, and c) Bzo - 17.05 kG (it

matches y0 1000) in Fig. 8c. In all three cases the rate of
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change of the current in the plates was equal

to Ip = 1.79 x 1011Amp /sec. The linearly increasing vertical

magnetic field of the plates matches the dotted lines of y versus

time in Figs. 8a-, 8b' and 8c'. It is seen then that at low

values of y the torsatron field confines the orbit inside the

torus even though the external field index has a negative

value. On the other hand, at high values of y the torsatron

field is no longer effective in confining the particle orbit

which becomes sensitive to the external field index (cf. Eqs.

(3.14), (3.15))

Figures 9 and 10 provide the main results of this paper.

They correspond to two different initial positions of the

particle orbit. The various parameters for these computer runs

are listed in Table IV. In both cases the outer plate had a gap

so that no= 0.5 at the minor axis. Figure 9A shows magnified the

particle orbit during the initial steps of the acceleration. The

- dotted line in Fig. 9A' shows the value of y versus time which

matches the linearly increasing vertical magnetic field in the

plates. In both runs, a value of y in excess of 1850 was

reached within a time of 10 usec, or within 500 revolutions. In

both runs there is no appreciable drift of the particle orbits.

As stated in Section III b, this is due to the fact that the rate

of change of the mismatch sy has a second order dependence on the

displacement and therefore, if ly is initially zero, it remains

very small during the acceleration. In the initial computer

runs, the toroidal corrections of the accelerating field were not

included in the computations and a very slow inward or outward

radial drift as well as an extreme sensitivity to the initial

value of the vertical magnetic field and its rate of change were

observed. Values of y beyond 1000 could not be reached since the

orbits would slowly drift and hit the wall of the torus. After

the toroidal corrections were included in the computations, the

drift disappeared as Figs. 9 and 10 indicate.
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Another feature that is observed in Figs. 9 and 10 is the

expansion of the orbits as time evolves. This is not a

continuous expansion but it occurs rather in bursts, the most

pronounced being when y exceeds the value of 1800. As discussed

in Section III c, in the rebatron there can be resonances (cf.Eq.

(3.26)) which for the parameters chosen here, occur

at Y, = 1830, y2 = 523, y3 = 323, Y4 = 236, etc. The resonance at

y = 1830 can be seen clearly in Figs. 9f and 10j and causes

eventually the orbit to hit the wall of the torus. This is the

worst resonance and occurs when IBocj/Bzo = 1/2. The amplitude

of the nth resonance is proportional to 1/n (cf. Eq. (3.23)),

i.e., it decreases rather slowly with n. Therefore, the higher

resonances are also noticeable. The second resonance may be seen

in Fig. 11, which is the same as Fig. 9c, but magnified.

Initially, when y varies from 500 to 600 the orbit rapidly

expands from 0.7 cm to 2.2 cm, but as y keeps increasing from 600

to 900 the radial position of the orbit remains close to 2.5 cm,

i.e., it does not vary as much. A comparison of the size of the

orbits in Figs. lOb, 10c and 10d, indicates that there is a

resonance close to y T 500 in the second run too. The higher

resonances beyond the second are clustered much closer together,

their amplitudes are smaller and, therefore, they are not as

noticeable individually. But they do cause an expansion of the

particle orbit as indicated in Fig. 9a and in Figs. 10a and

lOb. The value of the total toroidal magnetic field used in

these runs was B = - 15.6 kG. A higher value of B would

cause the first resonance to occur at a value of y greater than

1830 (cf. Eq. (3.26)). Therefore, there is no intrinsic

difficulty in the rebatron to accelerate the beam to one GeV and

beyond.

Figure 9f indicates a radical change in the shape of the

particle orbit as y surpasses the value of 1800. A similar

observation holds for Fig. 10j and also for Fig. 1Of, where y is

in the neighborhood of 1100. As stated in Section IlIc, this is

due to the fact that the characteristic frequencies become

multiples of each other. For the parameters chosen here,

34

'V%. J



Eq. (3.28) predicts that multiple frequencies should occur

when Y2 = 1830, Y3 = 1121, etc. Notice that in the first run

there is no change at y = 1830. This indicates that, in

addition to the occurrence of a multiple frequency, some other

conditions must be satisfied in order to change the shape of the

orbit. A clear demonstration is given in the runs shown in Figs.

12a and 12b, where there is no acceleration. In both runs the

initial position is xo  = 2 cm, z o  = 0, and the initial velocity

is vx = v = 0, v5 = c. Also, in both runs, no = 1/2. In the

run of Fig. 12a, y = 1830 and zo= 31.167 kG (it matches

y = 1830), while in the run of Fig. 12b, y = 1121 and Bzo =

19.095 kG (it matches yo = 1121)

V. Conclusions

A detailed numerical and analytical investigation of the

beam dynamics in the rebatron accelerator has been carried out.

It has been shown that energies approaching one GeV can be

achieved within 10 microseconds. Since the acceleration occurs

in such a short time, the device may not be sensitive to the

various inabilities and the loss to synchroton radiation should

be small.

As a result of the periodic nature of the acceleration in

the rebatron, it has been found that resonances can be excited

which cause the orbits to expand and, in the worst case, the beam

may hit the wall of the toroidal chamber. The worst resonance is

the fundamental, i.e., n = 1, and it occurs when the vertical

magnetic field becomes twice the total toroidal magnetic field.

This could be a potential problem in the rebatron unless the

toroidal magnetic field is sufficiently high so that the

fundamental resonance is not excited. In the cases studied here,

the total toroidal magnetic field was set at 15.6 KG which

allowed the beam to be accelerated at a y slightly higher than

1800 before the fundamental resonance was reached

at Y, 1830. From the computer runs, it has been concluded
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that the higher resonances do cause the orbits to expand but they

are not as detrimental as the fundamental resonance is.

To keep the inductive voltage managable, the vertical plates

which generate the vertical magnetic field should have a low

inductance. As an example, for the parameters in table II, the

inductance Lp of the plates is approximately( 2 8 ) 2.5 uH. A

vertical magnetic field Bzo = 17 kG is required to reach a Y of

1000, while the plates generate at the minor axis 17.58 Gauss per

kA. Therefore, the current in each plate required to generate 17

kG is Ip = 967 kA. Suppose that the acceleration

time at = 10 usec. Then the rate of change of the current in

the plates is I = 0.967 x 1011 Amp/sec and the inductive voltageP
is Vp = 242 kV, which is fairly high.

The simple analytical model of Section III, provided quite

reliable results with regard to the confinement of the beam by

the torsatron magnetic field. The predictions of the model are

in good agreement with the numerical results. It has been shown

that, at the initial stage of the acceleration, the torsatron

field provides excellent confinement of the beam, and the beam

equilibrium position was quite insensitive to the

. mismatch Sy/y and to the external field index n0 , as long

as ww <<10 o/Y. As the beam energy increases, the stage is

reached, where ww>>)Ik o/y . The torsatron field is no longer

effective and the beam equilibrium position becomes sensitive to

both the mismatch Sy/y and the external field index n0 . As

mentioned in Section III b, the sensitivity in n0 may prove

beneficial in providing a means for extracting the beam. (cf.

Figs. 8b and 8c).

Another interesting feature of the acceleration in the

rebatron is the absence of any drift of the beam when the

vertical magnetic field is matched to the beam energy. As

* explained in Section III b, this is due to the fact that, the

first order toroidal correction of the accelerating field cancels

36



out the first order correction of the electric field from the

plates. Therefore, if the mismatch is initially zero, it will

remain very small during the acceleration, and there is no

drift. This has been verified in several computer runs.

In the analytical and numerical results presented in this

paper, the self fields of the beam have not been included. Their

effect on the beam dynamics and the acceleration process will be

the subject of a future publication.
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Table I

Parameters associated with the torsatron fields shown in Fig.

3. Only two terms were retained in the series of Eqs. (2.1)

through (2.3).

Torus major radius ro (cm) = 100

Toroidal chamber minor radius o w(cm) = 10

Windings minor radius p0 (cm) 12

= 2r/L (cm- ) 0.1

1= 2ap0 K 2 (2ap 0) = -0.481

z - 2

Winding current I o  (kA) = 140

Torsatron magnetic field B0 (kG) 5.6

ext
External toroidal field Bso (kG) = 10

1*
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Table II

Parameters associated with the magnetic field of the plates shown

in Figs. 4 and 5.

Fig 4 Fig 5

Torus major radius ro (cm) = 100 100

Toroidal chamber minor radius p w(cm) - 10 10

Outer plate distance from minor axis ao (cm) 12 12

Inner plate distance from minor axis a, (cm) = -12 -12

Half height of outer plate ho/2 (cm) 24 24

Half height of outer gap Ho/2 (cm) = 0 2.35

Half height of inner plate hi/2 (cm) 24 24

Current in outer plate I (kA) 1 1p

Bz at minor axis (Gauss) - 18.45 17.58

External field index at minor axis no  - -0.18 0.5

Acceleration correction factor np 1.038 1.035
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Table III

Parameters associatd with the accelerating field in the region of

the gap shown in Fig. 6. There were a maximum of 51 terms

retained in the series of Eqs. (2.33) through (2.37).

Torus major radius ro (cm) = 100

Toroidal chamber minor radius pw (cm) = 10

Half width of the gap d/2 (cm) - 2

Half period of structure D/2 (cm) = 62

Voltage Vo  (volts) - 1

Poloidal angle + (radians) = 0
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Table IV

Parameters of the runs shown in Figs. 9 and 10.

Initial current in outer plate I (kA) = 8.1P

Initial vertical magnetic field from

plates Bzo (Gauss) = 142.4

Initial matching value of relativistic

factor ym = 8.35

Rate of change of current in plates

Ip (Amp/sec) 1.8745 x 1011

Accelerating voltage (MV) -2

Increment of y per revolution = 3.914

Initial relativistic factor y = 7

Initial positions (cm) r=100

z=O Fig. 9

s=O

* r=100

z=1.0 Fig. 10

s=O

v r =0
Initial velocities vz=O

-c
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4 - . 20000

S .2-

- 1900,

-. 2-- 18000k
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-- ...-Toroidal Coarution
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-2000:

* . Torsetron Field Components
(~-3000 a

a S-0
-4000

65000

0 2 4 6a 10
p 1cm1

Fig. 3 - Torsatron magnetic field components (a) at 4) s -0 and (b) at s o , (D - w/2. In
addition to the torsatron field, there is a toroidal field B4 - -10 kG which is generated by a set of
toroidal coils. (c) Magnetic field lines in (r,z) and (p ,s) planes.
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Fig. 3 (Cont'd) - Torsatron magnetic field components (a) at 0 s -o and (b) at a toroidal field
B91 - -10 kG which is generated by a set of toroidal coils. (c) Magnetic field lines in (r,z) and (p,s)
planes.
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Poloidal Stream Lines of B Field
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2

-6

90 94 98 102 106 110

r (cm)

Stream Lines of B down the tube
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5

0
0 15 30 45 60

s (Cm)

Fig. 3 (Cont'd) -Torsatron magnetic field components (a) at (D - s -o and (b) at a toroidal field
Bg" - -10 kG which is generated by a set of toroidal coils. (c) Magnetic field lines in (r,z) and (p,s)
planes.
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8. across system (0 < Z(A< z(B) ) ,across system (0 <z(A) <z(B)
19.8

1.019.4~

z 0 0cm
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178 z 10 cm178 ~. ~ - /z- 10 cm
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Fig. 4 - Magnetic field of plates without a gap on the outer plate, at various distances along the
r-axis or the z-axis. (a) B. versus r, (b) B, versus r, (c) B, versus z, and (d) B. versus z.
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', Fig. 5 - Magnetic field of plates with a gap on the outer plate, at various distances along the
~r-axis or the z-axis. (a) B2 versus r, (b) B, versus r, (c) R, versus z, and (d) B2 versus z.
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Fig. 6 - (a) Configuration, (b) field lines, (c) and (d) cylindrical components of the
accelerating electric field in the region of the gap at various distances from the minor
axis. The toroidal corrections have been included.
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Fig. 6 (Cont'd) - (a) Configuration, (b) field lines, (c) and (d) cylindrical components
of the accelerating electric field in the region of the gap at various distances from the
minor axis. The toroidal corrections have been included.
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Particle Orbit in the Transverse Plane Particle Orbit in the Transverse Plane

10 10.

ro - 100cm ro - 105cm
zo = 0.0 cm zo - 0.0 cm

2- 2-

-2--

I4 L
-10 A .10.

90 94 98 102 106 110 90 94 98 102 106 110

r (cm) r (cm)

Particle Orbit in the Truamers. Plane Particle Orbit in fth Transvers Plane
10 10- 1o

ra 104 cm ro w 1086cm

6- z 0.0cm 6o -z 0i.0cm

-,-,*1

- - -2

-10

90 94 98 102 106 110 90 94 98 102 108 110

r (cm) 
r (cm)

Fig. 7 Effect of the external field index n, of the magnetic field of the plates on the particle orbit

without acceleration. The gap on the outer plate is such that n, n 0.5.
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Particle Orbit in the Transverse Plane

10

6-

2-

-2 -

- -

-10
90 94 98 102 106 110

r (cm)

40- (a')

:- -

36 -

32- / -

28 --

24 ----

20
0 50 100

* TIME (nsec)

Fig. 8 -Demonstration that the particle orbit is confined by the torsatron fields only at the initial stage
of the acceleration. In all cases, there is no gap on the outer plate, so that n. HI - 0. 18. Fig. (7A) is
the same as Fig. (7a) but on a magnified scale.
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Partile Orbit in the Transverse Plane
1.6

(A)-

1.2 i-

S0.4 4

0.0 ~-

-0.8
100.2 100.6 101.0 101.4 101.8 102.2

r (cm)

Fig. 8 (Cont'd) -Demonstration that the particle orbit is confined by the torsatron fields only at the
initial stage of the acceleration. In all cases, there is no gap on the outer plate, so that n, f1 - 0. 18.
Fig. (7A) is the same as Fig. (7a) but on a magnified scale.
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Particle Orbit in the Transverse Plane
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p (b)-
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216 - /"
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0 40 so
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Fig. 8 (Cont'd) - Demonstration that the particle orbit is confined by the torsatron fields only at the
initial stage of the acceleration. In all cases, there is no gap on the outer plate, so that n, H - 0.18.
Fig. (7A) is the same as Fig. (7a) but on a magnified scale.
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Particle Orbit in the Transverse Plane
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. (c) j

II 1r
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1003 -- - / -

1001 -"

0 20 40
TIME (nsec)

Fig. 8 (Cont'd) - Demonstration that the particle orbit is confined by the torsatron fields only at the
initial stage of the acceleration. In all cases, there is no gap on the outer plate, so that n. lI - 0.18.
Fig. (7A) is the same as Fig. (7a) but on a magnified scale.
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Particle Orbit in the Transverse Plane
0.30

0.20

0.10

N-0.10

-20E

-0.30

__ __ _ __ __40_ __

99.96 100.04 100.12 100.22

r (cm)

26 (A

22 --

18~--

14-

10 -

0 s0 100
TIME (naec)

Fig. 9 -Particle orbit on the (r,z) plane (Figs. 9(a) through 9(f)) and the corresponding relativistic
factor y (Figs. 9(a') through 9(if)). The initial position of the particle is at r - 100 cm, z - 0 cm.
The particle orbit and y at the initial stage of the acceleration are shown on Figs. 9(A) and 9(A*)).
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Particle Orbit in the Transverse Plane
10

(a)

6 -

2-

E 0
-2

L7
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r

-10'
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400

L

300 -
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r -

- /
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i- 7

0
0 0.5 1.0 1.5 2.0

TIME (usec)

Fig. 9 (Cont'd) - Particle orbit on the (r,z) plane (Figs. 9(a) through 9(f)) and the corresponding

relativistic factor 'y (Figs. 9(a) through 9(f*)). The initial position of the particle is at r - 100 cm, z

- 0 cm. The particle orbit and y at the initial stage of the acceleration are shown on Figs. 9(A) and

9(A)).
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Particle Orbit in the Transverse Plane
10

(b)

6 -

2--d 0

-2-
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500

490 -('

470 7 r7

450-

430 -

410- -

390 ----
2.0 2.1 2.2 2.3 2.4 2.5

TIME (usec)

Fig. 9 (Cont'd) - Particle orbit on the (rz) plane (Figs. 9(a) through 9(f)) and the corresponding
relativistic factor y (Figs. 9(d) through 9(f)). The initial position of the particle is at r - 100 cm, z
- 0 cm. The particle orbit and y at the initial stage of the acceleration are shown on Figs. 9(A) and
9(A')).
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Particle Orbit in the Transverse Plane
10

(c)

6 -
2-

-26

-6

-10
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tc') ..++
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750

650-

550- "

450-
2.4 2.8 3.2 3.6 4.0 4.4

TIME (usec)

Fig. 9 (Cont'd) - Particle orbit on the (r,z) plane (Figs. 9(a) through 9(f)) and the corresponding
relativistic factor y (Figs. 9(a) through 9(r)). The initial position of the particle is at r - 100 cm, z
- 0 cm. The particle orbit and y at the initial stage of the acceleration are shown on Figs. 9(A) and
9(A')).
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Particle Orbit in the Transverse Plane
10-

-2-

L

-10'
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1200 -4

1100-,

900
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TIME (ussec)

Fig. 9 (Cont'd) -Particle orbit on the (r,z) plane (Figs. 9(a) through 9(f)) and the corresponding
relativistic factor -v (Figs. 9(d') through 9(f)). The initial position of the particle is at r - 100 cm, z
- 0 cm. The particle orbit and ~yat the initial stage of the acceleration are shown on Figs. 9(A) and

60



Particle Orbit in the Transverse Plane
10 -

-2-

Pd -

-10
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(0)
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1350:

1250 -i-___________
6.4 6.8 7.2 7.6 8.0 8.4

TIME (jssec)

Fig. 9 (Cont'd) -Particle orbit on the (r,z) plane (Figs. 9(a) through 9(f)) and the corresponding
relativistic factor y (Figs. 9(a') through 9(n)). The initial position of the particle is at r - 100 cm, z
- 0 cm. The particle orbit and y at the initial stage of the acceleration are shown on Figs. 9(A) and
9(A')).
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Particle Orbit in the Transverse Plane
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Fig. 9 (Cont'd) -Particle orbit on the (r,z) plane (Figs. 9(a) through 9(f)) and the corresponding
relativistic factor y (Figs. 9(a') through 9(r)). The initial position of the particle is at r - 100 cm. z

-0 cm. The particle orbit and vat the initial stage of the acceleration are shown on Figs. 9(A) and
9(A')),
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Particle Orbit in the Transverse Plane
10.

(a)
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2-
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sL
80 3
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4 ,- -

0 0 0.25 0.5 0.75 1.0
TIME (sec)

Fig. 10 - Particle orbit on the (r,z) plane (Figs. 10(a) through 10(j)) and the corresponding relativistic
factor y (Figs. 10(a') through 10(')). The initial position of the particle is at r - 100 cm, z - I cm.
The parameters of this run are listed in Table IV.
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Particle Orbit in the Transverse Plane

*1 (b)

-24

-2 q

90 94 98 102 106 110
r (cm)
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320~

* 280.

240~
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1.0 1.2 1.4 1.6 1.8 2.0

TIME (umse)

Fig. 10 (Cont'd) -Particle orbit on the (r,z) plane (Figs. 10(a) through 10(0)) and the corresponding
relativistic factor y (Figs. 10(ad) through 100f)). The initial position of the particle is at r 100 cm, z

I cm. The parameters of this run are listed in Table IV.
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Particle Orbit in the Transverse Plane
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TIME (Msec)

'psiFig. 10 (Cont'd) -Particle orbit on the (r,z) plane (Figs. 10(a) through 100j)) and the corresponding
relativistic factor y' (Figs. 10(a') through 10(JD). The initial position of the particle is at r -100 cm, z

I cm. The parameters of this run are listed in Table IV.
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Particle Orbit in the Transverse Plane
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Fig. 10 (Cont'd) - Particle orbit on the (r,z) plane (Figs. 10(a) through 10(j)) and the corresponding
relativistic factor y (Figs. 10(a') through 10(')). The initial position of the particle ' at r - 100 cm, z
- 1 cm. The parameters of this run are listed in Table IV.
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Particle Orbit in the Transverse Plane

10 1 0 r (el

6-

2-
E 

L

N -

-2-

L

-6 I-

190 94 9 8  102 106 110

r (cm)

980 (e'

940 
-

L900 L

I E

860 -

A '

780.

4.0 4.2 4.4 4.6 4.8 5.0

TIME 4Lsec)

Fig. 10 (Cont'd) - Particle orbit on the (r,z) plane (Figs. 10(a) through 10(j)) and the corresponding
relativistic factor v (Figs. 10(a) through O(j')). The initial position of the particle is at r - 100 cm, z
- 1 cm. The parameters of this run are listed in Table IV.
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Particle Orbit in the Transverse Plane
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TIME (usec)

Fig. 10 (Cont'd) -Particle orbit on the (r,z) plane (Figs. 10(a) through 10Qj)) and the corresponding
relativistic factor y (Figs. 10(a') through 100f)). The initial position of the particle is at r -100 cm, z

I cm. The parameters of this run are listed in Table IV.
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Paricle Orbit in the Transverse Plans
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Fig. 10 (Cont'd) -Particle orbit on the (r,z) plane (Figs. 10(a) through 100j)) and the corresponding
relativistic factor y (Figs. 10(a') through 10(j)). The initial position of the particle is at r -100 cm, z

I cm. The parameters of this run are listed in Table IV.
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Portile Orbit in ft Transverse Plane
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Fig. 10 (Cont'd) -Particle orbit on the (r,z) plane (Figs. 10(a) through 100j)) and the corresponding
relativistic factor y (Figs. 10(a') through I0(j)). The initial position of the particle is at r - 100 cm, z

I cm. The parameters of this run are listed in Table IV-
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Particle Orbit in the Transverse Plane
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Fig. 10 (Cont'd) -Particle orbit on the (r,z) plane (Figs. 10(a) through 100j)) and the corresponding
relativistic factor y (Figs. 10(d') through 10(r)). The initial position of the particle is at r - 100 cm. z

I cm. The parameters of this run are listed in Table IV.
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Particle Orbit in the Transverse Plane
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Fig. 10 (Cont'd) -Particle orbit on the (r,z) plane (Figs. 10(a) through 10(0)) and the corresponding
relativistic factor y (Figs. 10(a') through 10(f)). The initial position of the particle is at r - 100 cm, z

I cm. The parameters of this run are listed in Table IV.
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Particle Orbit in the Transverse Plane
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Fig. I1I - This figure is the same as Fig. (90) on the magnified scale. It demonstrates
the expansion of the particle orbit due to the resonance which occurs at Y2 -522.
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Particle Orbit in the Transverse Plane
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Appendix

In the modified betatron.01 the vector potential is given by

the expression
(2 9 )

n 2
A ro + nz 2  1-n r(lAe = Bzo r r-n r Tr- + 7 7 r (Al)

where n is the external field index and ro is the major radius
of the torus. Set r = r0 + x and expand Eq. (Al) close to the

origin x = z = 0. Then, the vector potential is approximately

equal to

2 2
As M BZO r0 (I + -n r ) ), (A2)

and the rate of change in y becomes:

Y e ___

mc2  at

e 1-n (x )+n=BZO r o (i+ + r IF ) )  (A3)

mc 0 0

The same expression will be shown to be true in the rebatron for
the slow motion. Notice that, because of the toroidal structure

* of the device, the accelerating electric field is periodic with
respect to the variable s o  - r 8 , with period 21rr .
Therefore, the Es component can be Fourier analyzed, i.e.,

Es (XZ,r 0 ) = o(x,z) + 'rAn(xz)cos(nF) + Bn(x,z)sin(ng)). (A4)

nl
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where

T

A~ (x,z) -JE (x ,z,r ) codW)d (A5b)

AJx). E (x.z~r 4) cs(ne9) do- (A5c)

-I

and e -8 The position at which the electric field

component Es is computed lies at a fixed distance r it r0 + x

from the major axis. Therefore, in order to change the integrals

over an angle into line integrals, the transformation '~= sir

should be made. In particular, under this transformation, Eq.

(A5a) becomes:

irr

*A (x i)t E (r,z ,s) ds. (A6)
7nrr

Since Es is localized in the region of the accelerating gap, the

line Integral above is equal to -V0.. i.e.,

V
A (x~z) =-0 (A7)

The rate of change in y is approximately equal to

Y e c -E s+ E p
mc

1 (A8)
mc s c at
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Replace Es from Eqs. (A4), (A7) and take into account

that T- wot, where 2 n/n ° is the time period for each

revolution around the torus. Then Eq. (A8) can be written as

follows:

Y= Yslow + Yosc (A9)

where

yslow = 1 +- 
_ 1 ) "  (AlOa)

slw mc 2vrr c ;

o = e (A (x,z) cos(nw t) - B (xz) sin(nwot)). (AlOb)YOSC mc n~xz 0 n"

n=l

The slow motion or the drift of the beam is associated with the

first term in Eq. (A9) while the resonances, discussed in Section
IIIc, are associated with the second term.

Concentrate on the slow motion and use Eqs. (2.15), (2.19a)

and (2.19b). Then Eq. (AlOa) becomes:

V 0
Yslow mc - + A (x,z)), (All).? c

and also

aAl
Br "aT (Al2a)

r az
B aA r A (Al2b)

z ax r
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Take a Taylor expansion of A3 (x,z) at x=O, z=O, i.e.,

aA a +A9 a 2A a1a 2 A 6 2AI
A (x,z) T A +- 2  +~2  

*X 1 z 1 z
60 aorx az T -77 T a2 axIz

ax

(A13)

where the partial derivatives are computed at x=0, z=O. It

follows from Eqs. (2.23), (2.22a), (2.22b) and (2.18) that

2'aA =a A

77 = 0 (A14)

Also use the identities:

A2 a2  aB a

1 z 1 (Al5a)
7 3- - 2' F-0 °+ 7 9o -x r0ax

a2- ad r (A15b)

az

Then Eq. (All) becomes approximately equal to

Vo i -r ~ ~ e
v° A + r +1aj

slow mc 2 c2 90 c r 2  c2 ix
.4 0

+ o 1 1 1 1 38 8x z 2

2ir 0 c o co c c

(A16)
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where 1/r - 1/(r 0 + x) was expanded in powers of x. For a

matched beam, I is given by Eqs. (3.19a), (3.19b) which can alsoP
be written as follows (cf. Eq. (Al2b)):

V°/!2ir° . (A17)

ax

Therefore, Eq. (A16) simplifies to the expression

(A18)

so e 2B ro+1 1 + ro aBzI 2  1r0 Br (z 2Yslow- = Bzorori + 7 ar " ° x r2 Y _ 9 Z
mc B o o

If the linearized expressions for Br Bz are used (cf. Eqs.

(2.24a), (2.24b)), then Eq. (A18) becomes:

Yslow e Br ri +. .1 n rL)2 + n(z. 2 a (A19)Yslow' =  zor r 0 2 r- ' r '(A)

mc 0 0

which is identical to Eq. (A3) for the modified betatron.

Therefore, the rate of change of the mismatch Sy, associated with

the slow motion in the rebatron, is a second order effect in the

displacement of the beam, that is very small and if the

mismatch Ay is initially zero is will remain negligible.

Concequently, the drift of the beam is negligible as observed in

the computer runs.
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